Agent-Based Modeling of Microbial Communities

ACS Synth Biol. 2022 Nov 18;11(11):3564-3574. doi: 10.1021/acssynbio.2c00411. Epub 2022 Oct 31.


Microbial communities are complex living systems that populate the planet with diverse functions and are increasingly harnessed for practical human needs. To deepen the fundamental understanding of their organization and functioning as well as to facilitate their engineering for applications, mathematical modeling has played an increasingly important role. Agent-based models represent a class of powerful quantitative frameworks for investigating microbial communities because of their individualistic nature in describing cells, mechanistic characterization of molecular and cellular processes, and intrinsic ability to produce emergent system properties. This review presents a comprehensive overview of recent advances in agent-based modeling of microbial communities. It surveys the state-of-the-art algorithms employed to simulate intracellular biomolecular events, single-cell behaviors, intercellular interactions, and interactions between cells and their environments that collectively serve as the driving forces of community behaviors. It also highlights three lines of applications of agent-based modeling, namely, the elucidation of microbial range expansion and colony ecology, the design of synthetic gene circuits and microbial populations for desired behaviors, and the characterization of biofilm formation and dispersal. The review concludes with a discussion of existing challenges, including the computational cost of the modeling, and potential mitigation strategies.

Keywords: agents; computational simulations; individual-based modeling; mathematical models; microbial communities; synthetic biology.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Humans
  • Microbial Consortia
  • Microbial Interactions
  • Microbiota*
  • Models, Theoretical
  • Systems Analysis