Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli

PLoS Comput Biol. 2022 Nov 3;18(11):e1010568. doi: 10.1371/journal.pcbi.1010568. eCollection 2022 Nov.

Abstract

Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Models, Neurological*
  • Neuronal Plasticity / physiology
  • Neurons / physiology
  • Parkinson Disease*
  • Plastics
  • Synapses / physiology

Substances

  • Plastics

Grants and funding

We gratefully acknowledge funding support by Boston Scientific Neuromodulation (Stanford Project 127674, url: https://www.bostonscientific.com/en-US/about-us/core-businesses/neuromodulation.html), by the John A. Blume Foundation, and by the Foundation for OCD Research (New Venture Fund 011665-2020-08-01, url: https://www.ffor.org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.