Flood occurrence analysis in small urban catchments in the context of regional variability

PLoS One. 2022 Nov 3;17(11):e0276312. doi: 10.1371/journal.pone.0276312. eCollection 2022.

Abstract

An original method for analyzing the influence of the meteorological, as well as physical-geographical conditions on the flooding of stormwater in small urban catchment areas is proposed. A logistical regression model is employed for the identification of the flooding events. The elaborated model enables to simulate the stormwater flooding in a single rainfall event, on the basis of the rainfall depth, duration, imperviousness of the catchment and its spatial distribution within the analyzed area, as well as the density of the stormwater network. The rainfall events are predicted considering the regional convective rainfall model for 32 rain gauges located in Poland, based on 44 years of rainfall data. In the study, empirical models are obtained to calculate the rainfall duration conditioning the flooding of stormwater in a small urban catchment area depending on the characteristics of the examined urban basins. The empirical models enabling to control the urbanization process of catchment areas, accounting for the local rainfall and meteorological characteristics are provided. The paper proposes a methodology for the identification of the areas especially sensitive to stormwater flooding in small urban catchment areas depending to the country scale. By employing the presented methodology, the regions with most sensitive urban catchments are identified. On this basis, a ranking of towns and cities is determined from the most sensitive to flooding in small urban catchment areas to the regions where the risk of flooding is lower. Using the method developed in the paper, maximum impervious catchment area are determined for the selected regions of the country, the exceedance of which determines the occurrence of stormwater flooding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cities
  • Floods*
  • Models, Theoretical
  • Rain
  • Urbanization
  • Water Movements*

Grants and funding

This article was prepared within the framework of project “Miniature 3” (2019/03/X/ST8/01452) entitled “Simulation of the impact of climate change and land use dynamics using statistical models on the performance of storm overflows for small urban catchments in the short and long term” funded by NCN (National Science Center) and partially supported by the Polish Ministry of Education and Science within the grant FD-20/IS-6/999.