Statement of problem: The influence of surface treatments on the bond durability of zirconia-reinforced lithium silicate ceramics (ZLS) is unclear.
Purpose: The purpose of this in vitro study was to evaluate the effect of different surface treatments on the bond durability of zirconia-reinforced lithium silicate ceramic after long-term thermocycling.
Material and methods: Five computer-aided design and computer-aided manufacturing (CAD-CAM) dental ceramic blocks, including 2 zirconia-reinforced lithium silicate ceramic materials (Vita Suprinity/VS and Cetra Duo/CD), 2 commonly used glass-ceramic materials (e.max CAD/EM and Empress CAD/EP), and 1 yttria-stabilized zirconia (Y-TZP, Zenostar/ZS) were tested. Rectangular ceramic blocks were divided into 6 groups and subjected to different surface treatments: group Control (no treatment), group Uni (universal adhesive), group HF (hydrofluoric acid), group CoJet, group HF+Uni (HF and universal adhesive), and group CoJet+Uni (CoJet and universal adhesive). Subsequently, the specimens were cemented to composite resin blocks, sectioned into rectangular microbars of approximately 2×2×12 mm in size, and assigned to 2 groups with and without 100 000 thermal cycles (n=15 per group). The microtensile bond strength (μTBS) test was performed using a universal testing machine. Failure modes were observed with a stereomicroscope and scanning electron microscope (SEM). Three-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons was performed to evaluate the effects of surface treatments, ceramics, and thermocycling on μTBS (α=.05).
Results: The μTBS (MPa) was affected by the surface treatment (P<.001), ceramic type (P<.001), and thermocycling (P<.001). The bond strength after HF etching and universal adhesive treatment was highest in glass-ceramic groups (VS, CD, EP, and EM), while CoJet combined with universal adhesive indicated the highest bond strength in the ZS group before (34.3 ±4.2 MPa) and after thermocycling (16.0 ±2.9 MPa). No significant differences for μTBS were found among ZLS (VS and CD), lithium disilicate ceramic group (EM), and leucite-based ceramic group (EP, P>.05), but they demonstrated better bond strength than zirconia (ZS group, P<.01) after thermocycling. Adhesive failure increased in all groups, and the cohesive failure of glass-ceramic decreased after thermocycling.
Conclusions: ZLS showed similar μTBS with traditional glass-ceramics, including lithium disilicate ceramic and leucite-based ceramic, and more durable bonding than zirconia to resist thermocycling. Moreover, the combination of HF and universal adhesive treatments was the most effective method for ZLS among all the different surface treatments in this study.
Copyright © 2022 Editorial Council for The Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.