Computational and neural mechanisms of statistical pain learning
- PMID: 36329014
- PMCID: PMC9633765
- DOI: 10.1038/s41467-022-34283-9
Computational and neural mechanisms of statistical pain learning
Abstract
Pain invariably changes over time. These fluctuations contain statistical regularities which, in theory, could be learned by the brain to generate expectations and control responses. We demonstrate that humans learn to extract these regularities and explicitly predict the likelihood of forthcoming pain intensities in a manner consistent with optimal Bayesian inference with dynamic update of beliefs. Healthy participants received probabilistic, volatile sequences of low and high-intensity electrical stimuli to the hand during brain fMRI. The inferred frequency of pain correlated with activity in sensorimotor cortical regions and dorsal striatum, whereas the uncertainty of these inferences was encoded in the right superior parietal cortex. Unexpected changes in stimulus frequencies drove the update of internal models by engaging premotor, prefrontal and posterior parietal regions. This study extends our understanding of sensory processing of pain to include the generation of Bayesian internal models of the temporal statistics of pain.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Updating Contextual Sensory Expectations for Adaptive Behavior.J Neurosci. 2022 Nov 23;42(47):8855-8869. doi: 10.1523/JNEUROSCI.1107-22.2022. Epub 2022 Oct 24. J Neurosci. 2022. PMID: 36280262 Free PMC article.
-
Confidence of probabilistic predictions modulates the cortical response to pain.Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2212252120. doi: 10.1073/pnas.2212252120. Epub 2023 Jan 20. Proc Natl Acad Sci U S A. 2023. PMID: 36669115 Free PMC article.
-
Dissociable Forms of Uncertainty-Driven Representational Change Across the Human Brain.J Neurosci. 2019 Feb 27;39(9):1688-1698. doi: 10.1523/JNEUROSCI.1713-18.2018. Epub 2018 Dec 6. J Neurosci. 2019. PMID: 30523066 Free PMC article.
-
Functional imaging of brain responses to pain. A review and meta-analysis (2000).Neurophysiol Clin. 2000 Oct;30(5):263-88. doi: 10.1016/s0987-7053(00)00227-6. Neurophysiol Clin. 2000. PMID: 11126640 Review.
-
Representations of uncertainty in sensorimotor control.Curr Opin Neurobiol. 2011 Aug;21(4):629-35. doi: 10.1016/j.conb.2011.05.026. Curr Opin Neurobiol. 2011. PMID: 21689923 Review.
Cited by
-
Characterization of spatiotemporal dynamics of binary and graded tonic pain in humans using intracranial recordings.PLoS One. 2023 Oct 16;18(10):e0292808. doi: 10.1371/journal.pone.0292808. eCollection 2023. PLoS One. 2023. PMID: 37844101 Free PMC article.
-
A computational mechanism of cue-stimulus integration for pain in the brain.Sci Adv. 2024 Sep 13;10(37):eado8230. doi: 10.1126/sciadv.ado8230. Epub 2024 Sep 11. Sci Adv. 2024. PMID: 39259795 Free PMC article.
-
Intact painful sensation but enhanced non-painful sensation in individuals with autistic traits.Front Psychiatry. 2024 Jul 9;15:1432149. doi: 10.3389/fpsyt.2024.1432149. eCollection 2024. Front Psychiatry. 2024. PMID: 39045552 Free PMC article.
-
Hierarchical predictive coding in distributed pain circuits.Front Neural Circuits. 2023 Mar 3;17:1073537. doi: 10.3389/fncir.2023.1073537. eCollection 2023. Front Neural Circuits. 2023. PMID: 36937818 Free PMC article. Review.
-
A Computational Framework for Understanding the Impact of Prior Experiences on Pain Perception and Neuropathic Pain.PLoS Comput Biol. 2024 Oct 31;20(10):e1012097. doi: 10.1371/journal.pcbi.1012097. eCollection 2024 Oct. PLoS Comput Biol. 2024. PMID: 39480877 Free PMC article.
References
-
- Büchel C, Geuter S, Sprenger C, Eippert F. Placebo analgesia: a predictive coding perspective. Neuron. 2014;81:1223–1239. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
