The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways

Crit Rev Food Sci Nutr. 2022 Nov 4;1-20. doi: 10.1080/10408398.2022.2142196. Online ahead of print.


Metabolic syndrome (MetS), a cluster of metabolic abnormalities composed of central obesity, elevated blood pressure, glucose disturbances, hypercholesterolemia and dyslipidaemia, has increasingly become a public health problem in the 21st century worldwide. The dysfunction of telomeres, the repetitive DNA with highly conserved sequences (5'-TTAGGG-3'), is remarkably correlated with organismal aging, even suggesting a causal relationship with metabolic disorders. The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple disorders are associated with telomere length in evidence, which have recently drawn wide attention. However, functional targets and pathways for the associations of n-3 PUFAs and telomere with MetS remain scare. Few studies have summarized the role of n-3 PUFAs in DNA damage repair pathways, anti-inflammatory pathways, and redox balance, linking with telomere biology, and other potential telomere-related signaling pathways. This review aims to (i) elucidate how n-3 PUFAs ameliorate telomere attrition in the context of anti-oxidation and anti-inflammation; (ii) unravel the role of n-3 PUFAs in modulating telomere-related neuron dysfunction and regulating the neuro-endocrine-immunological network in MetS; (iii) epidemiologically implicate the associations of metabolic disorders and n-3 PUFAs with telomere length; and (iv) suggest promising biochemical approaches and advancing methodologies to overcome the inter-variation problem helpful for future research.

Keywords: metabolic syndrome; n-3 polyunsaturated acids; signaling pathway; telomere.