Longitudinal transkingdom gut microbial approach towards decompensation in outpatients with cirrhosis

Gut. 2023 Apr;72(4):759-771. doi: 10.1136/gutjnl-2022-328403. Epub 2022 Nov 7.


Objective: First decompensation development is a critical milestone that needs to be predicted. Transkingdom gut microbial interactions, including archaeal methanogens, may be important targets and predictors but a longitudinal approach is needed.

Design: Cirrhosis outpatients who provided stool twice were included. Group 1: compensated, group 2: 1 decompensation (decomp), group 3: >1 decompensationwere followed and divided into those who remained stable or decompensated. Bacteria, viral and archaeal presence, α/β diversity and taxa changes over time adjusted for clinical variables were analysed. Correlation networks between kingdoms were analysed.

Results: 157 outpatients (72 group 1, 33 group 2 and 52 group 3) were followed and 28%-47% developed outcomes. Baseline between those who remained stable/developed outcome: While no α/β diversity differences were seen, commensals were lower and pathobionts were higher in those who decompensated. After decompensation: those experiencing their first decompensation showed greater decrease in α/β-diversity, bacterial change (↑Lactobacillus spp, Streptococcus parasanguinis and ↓ beneficial Lachnospiraceae and Eubacterium hallii) and viral change (↑Siphoviridae, ↓ Myoviridae) versus those with further decompensation. Archaea: 19% had Methanobacter brevii, which was similar between/within groups. Correlation networks: Baseline archaeal-viral-bacterial networks were denser and more homogeneous in those who decompensated versus the rest. Archaea-bacterial correlations collapsed post first decompensation. Lactobacillus phage Lc Nu and C2-like viruses were negatively linked with beneficial bacteria.

Conclusion: In this longitudinal study of cirrhosis outpatients, the greatest transkingdom gut microbial changes were seen in those reaching the first decompensation, compared with subsequent decompensating events. A transkingdom approach may refine prediction and provide therapeutic targets to prevent cirrhosis progression.


Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteriophages*
  • Gastrointestinal Microbiome*
  • Humans
  • Lactobacillus
  • Liver Cirrhosis
  • Longitudinal Studies
  • Outpatients