Ultrasonic-Assisted Rapid Preparation of Sulfonated Polyether Ether Ketone (PEEK) and Its Testing in Adsorption of Cationic Species from Aqueous Solutions

Materials (Basel). 2022 Oct 27;15(21):7558. doi: 10.3390/ma15217558.

Abstract

Herein, we report a new approach for the sulfonation of polyether ether ketone (PEEK) following a shorter path of reaction undertaken at 60 °C under ultrasonication. The application of this method enabled the reduction of the reaction time from several hours to less than one hour, achieving a relevant sulfonation degree. The sulfonated-PEEK (SPEEK) was characterized by advanced chemical and physical instrumental methods. According to 1H-NMR analysis, the degree of sulfonation of the polymer was equal to 70.3%. Advanced microscopy (SEM) showed that the fabricated SPEEK beads (2-4 mm) were porous inside with a log-normal distribution of pore sizes within the range 1.13-151.44 μm. As an application, the SPEEK polymer was tested for the adsorption of a cationic organic pollutant (Methylene blue, MB) from aqueous solutions. The equilibrium studies (isotherms) disclosed maximum adsorption capacities of 217 mg/g, 119 mg/g, and 68 mg/g at temperatures of 323 K, 313 K, and 300 K, respectively. The thermodynamic calculations indicated an endothermic effect (ΔHad = +11.81 kJ/mol) of the investigated adsorption process. The maximum removal efficiency of 99.14% was established by process optimization using the design of experiments strategy and data-driven modeling. Additionally, molecular docking simulations were performed to disclose the mechanism of interaction at the molecular level between the adsorbent (SPEEK) and pollutant.

Keywords: Methylene Blue; adsorption; modeling and optimization; molecular docking; sulfonated polyether ether ketone.