Potential Epha2 Receptor Blockers Involved in Cerebral Malaria from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis and Ocimum basilicum: A Computational Approach

Pathogens. 2022 Nov 4;11(11):1296. doi: 10.3390/pathogens11111296.


Cerebral malaria (CM) is a severe manifestation of parasite infection caused by Plasmodium species. In 2018, there were approximately 228 million malaria cases worldwide, resulting in about 405,000 deaths. Survivors of CM may live with lifelong post-CM consequences apart from an increased risk of childhood neurodisability. EphA2 receptors have been linked to several neurological disorders and have a vital role in the CM-associated breakdown of the blood-brain barrier. Molecular docking (MD) studies of phytochemicals from Taraxacum officinale, Tinospora cordifolia, Rosmarinus officinalis, Ocimum basilicum, and the native ligand ephrin-A were conducted to identify the potential blockers of the EphA2 receptor. The software program Autodock Vina 1.1.2 in PyRx-Virtual Screening Tool and BIOVIA Discovery Studio visualizer was used for this MD study. The present work showed that blocking the EphA2 receptor by these phytochemicals prevents endothelial cell apoptosis by averting ephrin-A ligand-expressing CD8+ T cell bioadhesion. These phytochemicals showed excellent docking scores and binding affinity, demonstrating hydrogen bond, electrostatic, Pi-sigma, and pi alkyl hydrophobic binding interactions when compared with native ligands at the EphA2 receptor. The comparative MD study using two PDB IDs showed that isocolumbin, carnosol, luteolin, and taraxasterol have better binding affinities (viz. -9.3, -9.0, -9.5, and -9.2 kcal/mol, respectively). Ocimum basilicum phytochemicals showed a lower docking score but more binding interactions than native ligands at the EphA2 receptor for both PDB IDs. This suggests that these phytochemicals may serve as potential drug candidates in the management of CM. We consider that the present MD study provides leads in drug development by targeting the EphA2 receptor in managing CM. The approach is innovative because a role for EphA2 receptors in CM has never been highlighted.

Keywords: EphA2 receptor; Rosmarinus officinalis; Taraxacum officinale; Tinospora cordifolia; cerebral malaria; docking.

Grant support

This research received no external funding.