Molecular modeling, docking and dynamics studies of fenugreek (Trigonella foenum-graecum) α-amylase

J Biomol Struct Dyn. 2023 Nov;41(19):9297-9312. doi: 10.1080/07391102.2022.2144458. Epub 2022 Nov 11.

Abstract

α-Amylase catalyses the hydrolysis of glucosidic bonds in polysaccharides such as starch, glycogen and their degradation products. In the present study, the three-dimensional structure of fenugreek (Trigonella foenum-graecum) α-amylase was determined using a homology modeling-based technique. The best predicted model was deposited in PMDB server with PMDB ID PM0084364. The phylogenetic tree was created using the UPGMA method with 8 homologous protein sequences, Trigonella foenum-graecum was utilized as the target protein. Alignment of the phylogenetic tree identified two primary functional groupings (A and B). α-Amylase from the target genome Trigonella foenum-graecum (Acc. No: GHNA01022531.1) was clustered with Medicago truncatula (Acc. No: XP003589186.1), Cicer arietinum (Acc. No: XP004499059.1), Cajanus cajan (Acc. No: XP020231823.1), Vigna angularis (Acc. No: NP001316768.1) and Vigna mungo (Acc. No: P17859.1), in group A cluster, while Hordeum vulgare (Acc. No: Q40015) and Oryza sativa (PDB ID: 3WN6) were in cluster B. The molecular dynamics simulations were performed to understand the molecular basis and mode of action of Trigonella foenum-graecum α-amylase. Additionally, a geometry-based molecular docking technique was used to evaluate potential binding interactions between the modeled structure of α-amylase and maltose. The results show that Trp228, Glu226, Arg199, His308, Tyr165, Asp309, Phe202 and Asp201 from Trigonella foenum-graecum α-amylase enzyme is involved in the binding to the substrate maltose. Our study provides a 3D model of Trigonella foenum-graecum α-amylase and aids in understanding the atomic level molecular underpinnings of the mechanism of α-amylase interaction with substrate maltose. Ca2+ are essential for the stability of domain B since they are connected to it. Ca2+ site ligands are Asp139, Glu130, Thr133, Asp135 and Gly131 residues. HIGHLIGHTSIn silico analysis, gene prediction of α-amylase was carried from Trigonella foenum-graecum.Analysis of the structure of α-amylase was carried out using homology modelling.Calcium binding sites and their interactions with α-amylase were visualised using BIOVIA DISCOVERY STUDIO 2019.The molecular interaction between Trigonella foenum-graecum α-amylase and maltose was studied in silico using a molecular docking-based method.To give the required simulation parameters, RMSD, RMSF, and Total Energy were calculated using BIOVIA DISCOVERY STUDIO 2019.[Figure: see text]Communicated by Ramaswamy H. Sarma.

Keywords: Trigonella foenum-graecum; calcium binding; homology modeling; molecular docking; molecular dynamics simulation; α-Amylase.

MeSH terms

  • Maltose
  • Molecular Docking Simulation
  • Phylogeny
  • Plant Extracts / pharmacology
  • Trigonella* / chemistry
  • Trigonella* / genetics
  • alpha-Amylases

Substances

  • alpha-Amylases
  • Maltose
  • Plant Extracts