Elucidating the genetic architecture of DNA methylation to identify promising molecular mechanisms of disease

Sci Rep. 2022 Nov 15;12(1):19564. doi: 10.1038/s41598-022-24100-0.

Abstract

DNA methylation commonly occurs at cytosine-phosphate-guanine sites (CpGs) that can serve as biomarkers for many diseases. We analyzed whole genome sequencing data to identify DNA methylation quantitative trait loci (mQTLs) in 4126 Framingham Heart Study participants. Our mQTL mapping identified 94,362,817 cis-mQTLvariant-CpG pairs (for 210,156 unique autosomal CpGs) at P < 1e-7 and 33,572,145 trans-mQTL variant-CpG pairs (for 213,606 unique autosomal CpGs) at P < 1e-14. Using cis-mQTL variants for 1258 CpGs associated with seven cardiovascular disease (CVD) risk factors, we found 104 unique CpGs that colocalized with at least one CVD trait. For example, cg11554650 (PPP1R18) colocalized with type 2 diabetes, and was driven by a single nucleotide polymorphism (rs2516396). We performed Mendelian randomization (MR) analysis and demonstrated 58 putatively causal relations of CVD risk factor-associated CpGs to one or more risk factors (e.g., cg05337441 [APOB] with LDL; MR P = 1.2e-99, and 17 causal associations with coronary artery disease (e.g. cg08129017 [SREBF1] with coronary artery disease; MR P = 5e-13). We also showed that three CpGs, e.g., cg14893161 (PM20D1), are putatively causally associated with COVID-19 severity. To assist in future analyses of the role of DNA methylation in disease pathogenesis, we have posted a comprehensive summary data set in the National Heart, Lung, and Blood Institute's BioData Catalyst.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, N.I.H., Extramural

MeSH terms

  • COVID-19*
  • Coronary Artery Disease* / genetics
  • CpG Islands / genetics
  • Cytosine
  • DNA Methylation
  • Diabetes Mellitus, Type 2* / genetics
  • Genome-Wide Association Study
  • Humans
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci

Substances

  • Cytosine