Amino Acid Conjugates of 2-Mercaptobenzimidazole Ameliorates High-Fat Diet-Induced Hyperlipidemia in Rats via Attenuation of HMGCR, APOB, and PCSK9

ACS Omega. 2022 Oct 27;7(44):40502-40511. doi: 10.1021/acsomega.2c05735. eCollection 2022 Nov 8.

Abstract

Purpose: This study was designed to explore the antihyperlipidemic effects of amino acid derivatives of 2-mercaptobenzimidazole (4J and 4K) in high-fat diet (HFD)-fed rats.

Methods: Male Sprague-Dawley rats were divided into nine groups which received either standard diet or HFD for 28 days. Blood samples were taken on 27th day from HFD-fed rats to ensure hyperlipidemia. HFD-induced hyperlipidemic rats later received daily dosing of either vehicle or simvastatin (SIM; 20 mg/kg) or 4J/4K compounds (10, 20, and 30 mg/kg) for 12 consecutive days. On 40th day, animals were sacrificed, and blood samples were collected for the determination of serum lipid profile and liver function parameters. Liver samples were harvested for histopathological, antioxidant, and qPCR analyses. Molecular docking of tested compounds with HMGCR was also performed to assess the binding affinities.

Results: 4J and 4K dose dependently decreased serum total cholesterol, triglycerides, low-density lipoprotein, very low-density lipoproteins, alanine transaminase (ALT), and aspartate aminotransferase (AST) levels while significantly alleviated high-density lipoproteins. However, SIM failed to reduce AST and ALT levels. Moreover, tested compounds displayed antioxidant effects by inducing superoxide dismutase and glutathione levels. Histopathology data also displayed protective effects of 4J and 4K against HFD-induced fatty changes and hepatic damage. In addition, 4J and 4K downregulated transcript levels of HMGCR, APOB, PCSK9, and VCAM1, and molecular docking analysis also supported the experimental data.

Conclusion: It is conceivable from this study that 4J and 4K exert their antihyperlipidemic effects by modulating multiple targets regulating lipid levels.