Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries

Small. 2023 Jan;19(2):e2205142. doi: 10.1002/smll.202205142. Epub 2022 Nov 18.

Abstract

Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li-ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build-up of dead Li in "hostless" Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li22 Si5 , Li22 (Si0.5 Ge0.5 )5, and Li22 Ge5 formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li22 Ge5 /Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm-2 /1 mAh cm-2 for 1000 h and at 3 mA cm-2 /3 mAh cm-2 for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li22 Ge5 decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO4, and NMC811 cathodes, the CP-LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.

Keywords: Li metal; carbon frameworks; lithiophilic; nanowires.