Identifying behavioral structure from deep variational embeddings of animal motion
- PMID: 36400882
- PMCID: PMC9674640
- DOI: 10.1038/s42003-022-04080-7
Identifying behavioral structure from deep variational embeddings of animal motion
Abstract
Quantification and detection of the hierarchical organization of behavior is a major challenge in neuroscience. Recent advances in markerless pose estimation enable the visualization of high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and reliable technical approaches are needed to uncover underlying structure in these data and to segment behavior into discrete hierarchically organized motifs. Here, we present an unsupervised probabilistic deep learning framework that identifies behavioral structure from deep variational embeddings of animal motion (VAME). By using a mouse model of beta amyloidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but also captures a hierarchical representation of the motif's usage. The approach allows for the grouping of motifs into communities and the detection of differences in community-specific motif usage of individual mouse cohorts that were undetectable by human visual observation. Thus, we present a robust approach for the segmentation of animal motion that is applicable to a wide range of experimental setups, models and conditions without requiring supervised or a-priori human interference.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Anipose: A toolkit for robust markerless 3D pose estimation.Cell Rep. 2021 Sep 28;36(13):109730. doi: 10.1016/j.celrep.2021.109730. Cell Rep. 2021. PMID: 34592148 Free PMC article.
-
Deep learning tools for the measurement of animal behavior in neuroscience.Curr Opin Neurobiol. 2020 Feb;60:1-11. doi: 10.1016/j.conb.2019.10.008. Epub 2019 Nov 29. Curr Opin Neurobiol. 2020. PMID: 31791006 Review.
-
Unsupervised quantification of naturalistic animal behaviors for gaining insight into the brain.Curr Opin Neurobiol. 2021 Oct;70:89-100. doi: 10.1016/j.conb.2021.07.014. Epub 2021 Sep 2. Curr Opin Neurobiol. 2021. PMID: 34482006 Review.
-
Quantifying behavior to understand the brain.Nat Neurosci. 2020 Dec;23(12):1537-1549. doi: 10.1038/s41593-020-00734-z. Epub 2020 Nov 9. Nat Neurosci. 2020. PMID: 33169033 Free PMC article. Review.
-
Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders.PLoS Comput Biol. 2021 Sep 22;17(9):e1009439. doi: 10.1371/journal.pcbi.1009439. eCollection 2021 Sep. PLoS Comput Biol. 2021. PMID: 34550974 Free PMC article.
Cited by
-
SaLSa: A Combinatory Approach of Semi-Automatic Labeling and Long Short-Term Memory to Classify Behavioral Syllables.eNeuro. 2023 Dec 11;10(12):ENEURO.0201-23.2023. doi: 10.1523/ENEURO.0201-23.2023. Print 2023 Dec. eNeuro. 2023. PMID: 37989587 Free PMC article.
-
Gamma oscillatory complexity conveys behavioral information in hippocampal networks.Nat Commun. 2024 Feb 29;15(1):1849. doi: 10.1038/s41467-024-46012-5. Nat Commun. 2024. PMID: 38418832 Free PMC article.
-
Post-acute immunological and behavioral sequelae in mice after Omicron infection.bioRxiv [Preprint]. 2023 Oct 4:2023.06.05.543758. doi: 10.1101/2023.06.05.543758. bioRxiv. 2023. PMID: 37333294 Free PMC article. Preprint.
-
Open-source software for automated rodent behavioral analysis.Front Neurosci. 2023 Apr 17;17:1149027. doi: 10.3389/fnins.2023.1149027. eCollection 2023. Front Neurosci. 2023. PMID: 37139530 Free PMC article. Review.
-
Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors.Patterns (N Y). 2024 Sep 10;5(11):101057. doi: 10.1016/j.patter.2024.101057. eCollection 2024 Nov 8. Patterns (N Y). 2024. PMID: 39568468 Free PMC article.
References
-
- Nilsson, S. R. O. et al. Simple behavioral analysis (simba) – an open source toolkit for computer classification of complex social behaviors in experimental animals. Preprint at https://www.biorxiv.org/content/10.1101/2020.04.19.049452v2 (2020). - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
