Background: Sedative agents may variably impact the stress response. Dexmedetomidine is a sympatholytic alpha2-adrenergic agonist mainly used as a second-line sedative agent in mechanically ventilated patients. We hypothesised that early sedation with dexmedetomidine as the primary agent would result in a reduced stress response compared to usual sedatives in critically ill ventilated adults.
Methods: This was a prospective sub-study nested within a multi-centre randomised controlled trial of early sedation with dexmedetomidine versus usual care. The primary outcome was the mean group differences in plasma levels of stress response biomarkers measured over 5 days following randomisation. Other hormonal, biological and physiological parameters were collected. Subgroup analyses were planned for patients with proven or suspected sepsis.
Results: One hundred and three patients were included in the final analysis. Baseline illness severity (APACHE II score), the proportion of patients receiving propofol and the median dose of propofol received were comparable between groups. More of the usual-care patients received midazolam (57.7% vs 33.3%; p = 0.01) and at higher dose (median (95% interquartile range) 0.46 [0.20-0.93] vs 0.14 [0.08-0.38] mg/kg/day; p < 0.01). The geometric mean (95% CI) plasma level of the stress hormones, adrenaline (0.32 [0.26-0.4] vs 0.38 [0.31-0.48]), noradrenaline (4.27 [3.12-5.85] vs 6.2 [4.6-8.5]), adrenocorticotropic hormone (17.1 [15.1-19.5] vs 18.1 [15.9-20.5]) and cortisol (515 [409-648] vs 618 [491-776)] did not differ between dexmedetomidine and usual-care groups, respectively. There were no significant differences in any other assayed biomarkers or physiological parameters Sensitivity analyses showed no effect of age or sepsis.
Conclusions: Early sedation with dexmedetomidine as the primary sedative agent in mechanically ventilated critically ill adults resulted in comparable changes in physiological and blood-borne parameters associated with the stress-response as with usual-care sedation.
Keywords: Allostasis; Critical illness; Multiple organ failure; Sedatives.
© 2022. Crown.