Characterization of Three Variants of SARS-CoV-2 In Vivo Shows Host-Dependent Pathogenicity in Hamsters, While Not in K18-hACE2 Mice

Viruses. 2022 Nov 21;14(11):2584. doi: 10.3390/v14112584.

Abstract

Animal models are used in preclinical trials to test vaccines, antivirals, monoclonal antibodies, and immunomodulatory drug therapies against SARS-CoV-2. However, these drugs often do not produce equivalent results in human clinical trials. Here, we show how different animal models infected with some of the most clinically relevant SARS-CoV-2 variants, WA1/2020, B.1.617.2/Delta, B.1.1.529/Omicron, and BA5.2/Omicron, have independent outcomes. We show that in K18-hACE2 mice, B.1.617.2 is more pathogenic, followed by WA1, while B.1.1.529 showed an absence of clinical signs. Only B.1.1.529 was able to infect C57BL/6J mice, which lack the human ACE2 receptor. B.1.1.529-infected C57BL/6J mice had different T cell profiles compared to infected K18-hACE2 mice, while viral shedding profiles and viral titers in lungs were similar between the K18-hACE2 and the C57BL/6J mice. These data suggest B.1.1.529 virus adaptation to a new host and shows that asymptomatic carriers can accumulate and shed virus. Next, we show how B.1.617.2, WA1 and BA5.2/Omicron have similar viral replication kinetics, pathogenicity, and viral shedding profiles in hamsters, demonstrating that the increased pathogenicity of B.1.617.2 observed in mice is host-dependent. Overall, these findings suggest that small animal models are useful to parallel human clinical data, but the experimental design places an important role in interpreting the data. Importance: There is a need to investigate SARS-CoV-2 variant phenotypes in different animal models due to the lack of reproducible outcomes when translating experiments to the human population. Our findings highlight the correlation of clinically relevant SARS-CoV-2 variants in animal models with human infections. Experimental design and understanding of correct animal models are essential to interpreting data to develop antivirals, vaccines, and other therapeutic compounds against COVID-19.

Keywords: COVID-19; Delta B.1.617.2; K18-hACE2 mice; LD50 survival; Omicron B.1.1.529; Omicron BA5.2; SARS-CoV-2; Syrian hamster; T cells; WA1/2020; activation-induced memory (AIM); animal models; cytokines; memory T cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiviral Agents
  • COVID-19*
  • Cricetinae
  • Disease Models, Animal
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • SARS-CoV-2* / genetics
  • Virulence

Substances

  • K-18 conjugate
  • Antiviral Agents

Supplementary concepts

  • SARS-CoV-2 variants

Grant support

This research received no external funding.