Main components of free organic carbon generated by obligate chemoautotrophic bacteria that inhibit their CO2 fixation

iScience. 2022 Nov 11;25(12):105553. doi: 10.1016/j.isci.2022.105553. eCollection 2022 Dec 22.

Abstract

Chemoautotrophic bacteria play an important role in combating the rise in global CO2. However, recently it was found that extracellular free organic carbon (EFOC) generated by chemoautotrophic bacteria inhibits their CO2 fixation. Although continuous-flow membrane bioreactor can remove EFOC and enrich bacteria, it may also remove beneficial bio-factors for bacterial growth. Finding out the main inhibitory factors and inhibitory mechanisms in EFOC can provide theoretical guidance for the development of targeted inhibitory component removal technology. The results show a significant negative correlation between the increasing proportion of small-molecule EFOC and the decreasing trend of CO2 fixation efficiency, and simulation experiments confirm that the small molecule organics such as amino acids and organic acids are the main components of EFOC that inhibit CO2 fixation by inhibiting ribulose bisphosphate carboxylase/oxygenase (RuBisCO) gene (cbb) transcription efficiency. Therefore, amino acids and organic acids are suggested to be recovered to promote efficient CO2 fixation of autotrophic bacteria.

Keywords: Biochemistry; biophysics; microbiology.