Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages

Socioecon Plann Sci. 2022 Aug:82:101250. doi: 10.1016/j.seps.2022.101250. Epub 2022 Jan 29.

Abstract

As supplying adequate blood in multiple countries has failed due to the Covid-19 pandemic, the importance of redesigning a sensible protective-resilience blood supply chain is underscored. The outbreak-as an extensive disruption-has caused a delay in ordering and delivering blood and its by-products, which leads to severe social and financial loss to healthcare organizations. This paper presents a robust multi-phase optimization approach to model a blood supply network ensuring blood is collected efficiently. We evaluate the effectiveness of the model using real-world data from two mechanisms. Firstly, a Geographic Information System (GIS)-based method is presented to find potential alternative locations for blood donation centers to maximize availability, accessibility, and proximity to blood donors. Then, a protective mathematical model is developed with the incorporation of (a) blood perishability, (b) efficient collation centers, (c) multiple-source of suppliers, (d) back-up centers, (e) capacity limitation, and (f) uncertain demand. Emergency back-up for laboratory centers to supplement and offset the processing plants against the possible disorders is applied in a two-stage stochastic robust optimization model to maximize the level of hospitals' coverage. The results highlight the fraction cost of considering back-up facilities in the total costs and provide more resilient decisions with lower risks by examining resource limitations.

Keywords: Alternative collection facilities; Blood supply chain; Disruption management; Geographic information system; Pandemic; Robust optimization.