Two novel phosphorus/potassium-degradation bacteria: Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 and their application in two-stage composting of corncob residue

Arch Microbiol. 2022 Dec 8;205(1):17. doi: 10.1007/s00203-022-03357-z.

Abstract

For effective utilization of corncob residue to realize green circular production, using composting to obtain a high-quality and low-cost biomass fertilizer has become a very important transformation avenue. In this paper, two novel phosphorus/potassium-degradation bacterial strains were isolated from tobacco straw and identified as Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 (abbreviated as SD-1/SD-3). These identified two novel bacteria SD-1/SD-3 show that the soluble phosphorus content of SD-1/SD-3 reached 360.89 mg L-1/403.56 mg L-1 in the shake flask test, and the mass concentration of soluble potassium is 136.56 mg L-1/139.89 mg L-1. In addition, the Laccase (Lac), Lignin peroxidase (LiP), and Manganese peroxidase (MnP) activities of SD-1 and SD-3 are 54.45 U L-1/394.84 U L-1/222.79 U L-1 and 46.27 U L-1/395.26 U L-1/203.98 U L-1 respectively, with the carboxy-methyl cellulase (CMCase) of 72.07 U mL-1 and 52.69 U mL-1. Meanwhile, the effects of three different combinations of cultures, i.e., no inoculation (K1), inoculation of SD-1/SD-3 on day 21 (K2) and on day 0 (G) are investigated to understand the influence on the degradation degree of corncob residue compost. The results of K2 compost treatment showed that the effective P/K content increased nearly 3.1/2.4 times, the degradation of cellulose/lignin was 49.1/68.0%, and the germination rate was 110.23%, which were higher than other experiment groups K1/G. In conclusion, knowledge of this paper will be very useful for the industrial sector for the treatment of complex corncob residue.

Keywords: Compost; Inoculation stage; Novel releasing P/K bacteria; Residue degradation.

MeSH terms

  • Bacteria*

Supplementary concepts

  • Bacillus altitudinis
  • Bacillus aerophilus