Shedding Light on the Vibrational Signatures in Halogen-Bonded Graphitic Carbon Nitride Building Blocks

Chemphyschem. 2023 Apr 3;24(7):e202200812. doi: 10.1002/cphc.202200812. Epub 2023 Jan 20.

Abstract

The relative contributions of halogen and hydrogen bonding to the interaction between graphitic carbon nitride monomers and halogen bond (XB) donors containing C-X and C≡C bonds were evaluated using computational vibrational spectroscopy. Conventional probes into select vibrational stretching frequencies can often lead to disconnected results. To elucidate this behavior, local mode analyses were performed on the XB donors and complexes identified previously at the M06-2X/aVDZ-PP level of theory. Due to coupling between low and high energy C-X vibrations, the C≡C stretch is deemed a better candidate when analyzing XB complex properties or detecting XB formation. The local force constants support this conclusion, as the C≡C values correlate much better with the σ-hole magnitude than their C-X counterparts. The intermolecular local stretching force constants were also assessed, and it was found that attractive forces other than halogen bonding play a supporting role in complex formation.