Flat Photonic Crystal Fiber Plasmonic Sensor for Simultaneous Measurement of Temperature and Refractive Index with High Sensitivity

Sensors (Basel). 2022 Nov 22;22(23):9028. doi: 10.3390/s22239028.

Abstract

A compact temperature-refractive index (RI) flat photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) is presented in this paper. Sensing of temperature and RI takes place in the x- and y- polarization, respectively, to avoid the sensing crossover, eliminating the need for matrix calculation. Simultaneous detection of dual parameters can be implemented by monitoring the loss spectrum of core modes in two polarizations. Compared with the reported multi-function sensors, the designed PCF sensor provides higher sensitivities for both RI and temperature detection. A maximum wavelength sensitivity of -5 nm/°C is achieved in the temperature range of -30-40 °C. An excellent optimal wavelength sensitivity of 17,000 nm/RIU is accomplished in the RI range of 1.32-1.41. The best amplitude sensitivity of RI is up to 354.39 RIU-1. The resolution of RI and temperature sensing is 5.88 × 10-6 RIU and 0.02 °C, respectively. The highest value of the figure of merit (FOM) is 216.74 RIU-1. In addition, the flat polishing area of the gold layer reduces the manufacturing difficulty. The proposed sensor has the characteristics of high sensitivity, simple structure, good fabrication repeatability, and flexible operation. It has potential in medical diagnosis, chemical inspection, and many other fields.

Keywords: dual-parameter measurement; photonic crystal fiber; refractive index sensor; surface plasmon resonance; temperature sensor.