Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients

Front Pharmacol. 2022 Nov 24:13:1007113. doi: 10.3389/fphar.2022.1007113. eCollection 2022.

Abstract

Background: Atrial fibrillation (AF) is the leading cause of ischemic stroke and treatment has focused on reducing this risk through anticoagulation. Direct Oral Anticoagulants (DOACs) are the first-line guideline-recommended therapy since they are as effective and overall safer than warfarin in preventing AF-related stroke. Although patients bleed less from DOACs compared to warfarin, bleeding remains the primary safety concern with this therapy. Hypothesis: Genetic variants known to modify the function of metabolic enzymes or transporters involved in the pharmacokinetics (PK) of DOACs could increase the risk of bleeding. Aim: To assess the association of eight, functional PK-related single nucleotide variants (SNVs) in five genes (ABCB1, ABCG2, CYP2J2, CYP3A4, CYP3A5) with the risk of bleeding from DOACs in non-valvular AF patients. Methods: A retrospective cohort study was carried out with 2,364 self-identified white non-valvular AF patients treated with either rivaroxaban or apixaban. Genotyping was performed with Illumina Infinium CoreExome v12.1 bead arrays by the Michigan Genomics Initiative biobank. The primary endpoint was a composite of major and clinically relevant non-major bleeding. Cox proportional hazards regression with time-varying analysis assessed the association of the eight PK-related SNVs with the risk of bleeding from DOACs in unadjusted and covariate-adjusted models. The pre-specified primary analysis was the covariate-adjusted, additive genetic models. Six tests were performed in the primary analysis as three SNVs are in the same haplotype, and thus p-values below the Bonferroni-corrected level of 8.33e-3 were considered statistically significant. Results: In the primary analysis, none of the SNVs met the Bonferroni-corrected level of statistical significance (all p > 0.1). In exploratory analyses with other genetic models, the ABCB1 (rs4148732) GG genotype tended to be associated with the risk of bleeding from rivaroxaban [HR: 1.391 (95%CI: 1.019-1.900); p = 0.038] but not from apixaban (p = 0.487). Conclusion: Eight functional PK-related genetic variants were not significantly associated with bleeding from either rivaroxaban or apixaban in more than 2,000 AF self-identified white outpatients.

Keywords: DOAC; anticoagulation; atrial fibrillation; bleeding; pharmacogenetics.