The Golgi apparatus is one of the major sites of protein and lipid glycosylation and processing. Protein N-glycosylation plays critical roles in protein folding, transport, stability, and activity. Various glycosyltransferases and glycoside hydrolases are localized at each cisterna in the Golgi apparatus and synthesize a large variety of N-glycan structures. The biosynthetic pathways of N-glycans are complicated, which hiders the rational design of glycan metabolic pathways. In addition, the analysis of glycan structure requires specialized instruments for analyses such as mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy, which are not familiar to all laboratories. Here, we introduce relatively simple methods for N-glycan analysis, including disruption of genes encoding glycosyltransferases or glycoside hydrolases, glycan structural analysis using lectins and mass spectrometry, and visualization of glycan metabolic pathways in silico.
Keywords: Gene disruption; Glycan metabolism; Glycoengineering; Mass spectrometry.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.