Hypoxia signatures in closed-circuit rebreather divers

Diving Hyperb Med. 2022 Dec 20;52(4):237-244. doi: 10.28920/dhm52.4.237-244.


Introduction: Faults or errors during use of closed-circuit rebreathers (CCRs) can cause hypoxia. Military aviators face a similar risk of hypoxia and undergo awareness training to determine their 'hypoxia signature', a personalised, reproducible set of symptoms. We aimed to establish a hypoxia signature among divers, and to investigate their ability to detect hypoxia and self-rescue while cognitively overloaded.

Methods: Eight CCR divers and 12 scuba divers underwent an initial unblinded hypoxia exposure followed by three trials; a second hypoxic trial and two normoxic trials in randomised order. Hypoxia was induced by breathing on a CCR with no oxygen supply. Subjects pedalled on a cycle ergometer while playing a neurocognitive computer game to simulate real world task loading. Subjects identified hypoxia symptoms by pointing to a board listing common hypoxia symptoms, and were instructed to perform a 'bailout' procedure to mimic self-rescue if they perceived hypoxia. Divers were prompted to bailout if peripheral oxygen saturation fell to 75%, or after six minutes during normoxic trials. Subsequently we interviewed subjects to determine their ability to distinguish hypoxia from normoxia.

Results: Ninety-five percent of subjects (19/20) showed agreement between unblinded and blinded hypoxia symptoms. Subjects correctly identified the gas mixture in 85% of the trials. During unblinded hypoxia, only 25% (5/20) of subjects performed unprompted bailout. Fifty-five percent of subjects (11/20) correctly performed the bailout but only when prompted, while 15% (3/20) were unable to bailout despite prompting. During blinded hypoxia 45% of subjects (9/20) performed the bailout unprompted while 15% (3/20) remained unable to bailout despite prompting.

Conclusions: Although our data support a normobaric hypoxia signature among both CCR and scuba divers under experimental conditions, most subjects were unable to recognise hypoxia in real time and perform a self-rescue unprompted, although this improved in the second hypoxia trial. These results do not support hypoxia exposure training for CCR divers.

Keywords: Physiology; Rescue; Safety; Technical diving.

MeSH terms

  • Diving*
  • Humans
  • Hypoxia
  • Respiration