Manganese-induced PINK1 S-nitrosylation exacerbates nerve cell damage by promoting ZNF746 repression of mitochondrial biogenesis

Sci Total Environ. 2023 Mar 10:863:160985. doi: 10.1016/j.scitotenv.2022.160985. Epub 2022 Dec 16.

Abstract

Occupational exposure and non-occupational exposure to excessive levels of manganese (Mn) result in neuronal cell damage through mitochondrial dysfunction. The functional integrity of mitochondria is maintained by mitophagy and mitochondrial biogenesis. Although Mn-induced S-nitrosylation of PTEN-induced putative kinase 1 (PINK1) can interfere with mitophagy, its effect on mitochondrial biogenesis remains unclear. In this study, we established a rat model of Mn poisoning or "manganism" to examine the relationship between PINK1 S-nitrosylation and impairment of mitochondrial biogenesis, and found that treatment with 60 mg/kg Mn induced marked neurobehavioral abnormalities in rats and significantly increased the S-nitrosylation level of PINK1. We also found that the nuclear-encoded peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A)-mediated mitochondrial biogenesis was significantly upregulated in rats treated with 15 and 30 mg/kg Mn, and downregulated in rats treated with 60 mg/kg Mn. We further investigated the role of S-nitrosylated PINK1 and its molecular mechanism in the high-dose Mn-mediated impairment of mitochondrial biogenesis in primary cultured neurons treated with the nitric oxide synthase 2 (NOS2) inhibitor 1400 W. Our results revealed that the PPARGC1A-mediated mitochondrial biogenesis was upregulated in neurons treated with 100 μM, but downregulated in neurons treated with 200 μM Mn, which was similar to the in vivo results. However, treatment with 1400W could effectively prevent the 200 μM Mn-mediated impairment of mitochondrial biogenesis by suppressing nitric oxide (NO)-mediated PINK1 S-nitrosylation and rescuing Parkin-interacting substrate (PARIS, ZNF746) degradation, thereby upregulating mitochondrial biogenesis via PPARGC1A. These findings demonstrated that S-nitrosylation of PINK1 and subsequent prevention of ZNF746 degradation were crucial signaling processes involved in the Mn-mediated impairment of mitochondrial biogenesis, which might serve as an underlying mechanism of Mn-induced neurotoxicity. Furthermore, this study provided a reliable target for the prevention and treatment of manganism.

Keywords: Mitochondria dysfunction; Mn; Neurotoxicity.

MeSH terms

  • Animals
  • Manganese* / metabolism
  • Neurons / metabolism
  • Organelle Biogenesis
  • Protein Kinases* / metabolism
  • Rats
  • Repressor Proteins / metabolism
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Manganese
  • Protein Kinases
  • Repressor Proteins
  • Ubiquitin-Protein Ligases
  • ZNF746 protein, rat