Enhanced Cyclability of LiNi0.6Co0.2Mn0.2O2 Cathodes by Integrating a Spinel Interphase in the Grain Boundary

ACS Appl Mater Interfaces. 2023 Jan 11;15(1):1592-1600. doi: 10.1021/acsami.2c18423. Epub 2022 Dec 21.

Abstract

Nickel-rich layered oxides are promising cathode materials for high-energy-density lithium-ion batteries. Unfortunately, the interfacial instability and intergranular cracks result in fast capacity fading and voltage fading during battery cycling. To address these issues, a coherent spinel interphase in the grain boundary of LiNi0.6Co0.2Mn0.2O2 (NCM) was successfully constructed via solution infusion and heat treatment. The results showed that the spinel (LiMn2O4) interphase could significantly reduce the formation of intergranular cracks during cycling. Meanwhile, the spinel structure on the primary particles effectively suppressed surface degradation, realizing the reduction of interface charge-transfer resistance and electrochemical polarization. As a result, the spinel-modified NCM cathode materials display superior electrochemical cyclability. The 1 wt % spinel phase-modified NCM delivers a discharge capacity of 154.1 mAh g-1 after 300 cycles (1 C, 3-4.3 V) with an excellent capacity retention of 93%.

Keywords: LiNi0.6Co0.2Mn0.2O2; cyclability; intergranular cracks; solution infusion; spinel interphase.