From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization

Adv Healthc Mater. 2023 Mar;12(8):e2202437. doi: 10.1002/adhm.202202437. Epub 2023 Jan 10.

Abstract

Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.

Keywords: cancer; characterizations; extracellular vesicles; microfluidics; single EVs.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Biomarkers / analysis
  • Extracellular Vesicles* / chemistry
  • MicroRNAs* / metabolism
  • Microfluidics

Substances

  • MicroRNAs
  • Biomarkers