Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration

Nature. 2023 Jan;613(7942):169-178. doi: 10.1038/s41586-022-05535-x. Epub 2022 Dec 21.

Abstract

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aging* / metabolism
  • Aging* / physiology
  • Animals
  • Cellular Senescence* / physiology
  • Chromatin / genetics
  • Fibrosis / physiopathology
  • Geroscience
  • Humans
  • Inflammation* / metabolism
  • Inflammation* / physiopathology
  • Mice
  • Muscle, Skeletal* / physiology
  • Muscle, Skeletal* / physiopathology
  • Regeneration*
  • Stem Cell Niche* / physiology
  • Stem Cells / physiology
  • Transcriptome

Substances

  • Chromatin
  • Cd36 protein, mouse