Cyproterone Acetate Mediates IRE1α Signaling Pathway to Alleviate Pyroptosis of Ovarian Granulosa Cells Induced by Hyperandrogen

Biology (Basel). 2022 Dec 4;11(12):1761. doi: 10.3390/biology11121761.

Abstract

Objective: Hyperandrogenemia (HA) is the main pathophysiological change that takes place in polycystic ovary syndrome (PCOS). Cyproterone acetate (CYA) is a drug commonly used to reduce androgen in patients with PCOS. Long-term and continuous exposure to HA can cause ovarian granulosa cells (GCs), pyroptotic death, and follicular dysfunction in PCOS mice. The aim of this study was to investigate whether CYA could ameliorate the hyperandrogenemia-induced pyroptosis of PCOS ovarian GCs by alleviating the activation of the IRE1α signaling pathway.

Methods: Firstly, thirty PCOS patients with HA as their main clinical manifestation were selected as the study group, and thirty non-PCOS patients were selected as the control group. The GCs and follicular fluid of the patients were collected, and the expression of pyroptosis-related proteins was detected. Secondly, a PCOS mouse model induced by dehydroepiandrosterone (DHEA) was constructed, and the treatment group model was constructed with the subcutaneous injection of cyproterone acetate in PCOS mice. The expression of pyroptosis-related protein in ovarian GCs was detected to explore the alleviating effect of CYA on the pyroptosis of ovarian GCs in PCOS mice. Thirdly, KGN cells-i.e., from the human GC line-were cultured with dihydrotestosterone, CYA, and ERN1 (IRE1α gene) small interfering RNA in vitro to explore whether CYA can alleviate the activation of the IRE1α signaling pathway and ameliorate the hyperandrogenemia-induced pyroptosis of PCOS ovarian GCs.

Results: The expression of pyroptosis-related proteins was significantly increased in ovarian GCs of PCOS patients with HA as the main clinical manifestation, and in the PCOS mouse model induced by DHEA. After treatment with CYA, the expression of pyroptosis-related proteins in the ovarian GCs of mice was significantly lower than that in PCOS mice. In vitro experiments showed that CYA could ameliorate KGN cells' pyroptosis by alleviating the activation of the IRE1α signaling pathway.

Conclusion: This study showed that CYA could ameliorate the activation of the IRE1α signaling pathway in mouse GCs and KGN cells, and also alleviate pyroptosis in ovarian GCs. This study provides a new mechanism and evidential support for CYA in the treatment of PCOS patients.

Keywords: IRE1α signaling pathway; granulosa cells; hyperandrogenemia; pyroptosis.