Comparison between Olympic Weightlifting Lifts and Derivatives for External Load and Fatigue Monitoring

Healthcare (Basel). 2022 Dec 10;10(12):2499. doi: 10.3390/healthcare10122499.

Abstract

Load management is an extremely important subject in fatigue control and adaptation processes in almost all sports. In Olympic Weightlifting (OW), two of the load variables are intensity and volume. However, it is not known if all exercises produce fatigue of the same magnitude. Thus, this study aimed to compare the fatigue prompted by the Clean and Jerk and the Snatch and their derivative exercises among male and female participants, respectively. We resorted to an experimental quantitative design in which fatigue was induced in adult individuals with weightlifting experience of at least two years through the execution of a set of 10 of the most used lifts and derivatives in OW (Snatch, Snatch Pull, Muscle Snatch, Power Snatch, and Back Squat; Clean and Jerk, Power Clean, Clean, High Hang Clean, and Hang Power Clean). Intensity and volume between exercises were equalized (four sets of three repetitions), after which one Snatch Pull test was performed where changes in velocity, range of motion, and mean power were assessed as fatigue measures. Nine women and twelve men participated in the study (age, 29.67 ± 5.74 years and 28.17 ± 5.06 years, respectively). The main results showed higher peak velocity values for the Snatch Pull test when compared with Power Snatch (p = 0.008; ES = 0.638), Snatch (p < 0.001; ES = 0.998), Snatch Pull (p < 0.001, ES = 0.906), and Back Squat (p < 0.001; ES = 0.906) while the differences between the Snatch Pull test and the derivatives of Clean and Jerk were almost nonexistent. It is concluded that there were differences in the induction of fatigue between most of the exercises analyzed and, therefore, coaches and athletes could improve the planning of training sessions by accounting for the fatigue induced by each lift.

Keywords: Clean and Jerk; Olympic exercises; Power Clean; Snatch; Squat; load monitoring; power; weightlifting derivatives.