Transport, nutritional and metabolic studies of taurine in staphylococci

J Gen Microbiol. 1987 Apr;133(4):849-56. doi: 10.1099/00221287-133-4-849.


A specific, Na+-dependent, energy-requiring transport system for taurine has been reported recently in the Staphylococcus aureus M strain. Taurine was taken up vigorously by all S. aureus strains tested. The system was Na+-dependent, and Na+ decreased the Km but had no effect on the Vmax of the transport system. Among coagulase-negative staphylococci, the Staphylococcus epidermidis group (a taxonomically related group of species associated with humans or other primates) and the free-living, wide-ranging species Staphylococcus sciuri showed vigorous taurine uptake. Somewhat lower rates were found in the Staphylococcus saprophyticus group. Low or barely detectable uptake rates were noted in other staphylococcal species that were primarily of animal origin. No taurine uptake was detected in a variety of other bacterial species tested. Taurine uptake, which was not Na+-dependent, occurred in a Pseudomonas aeruginosa strain grown on taurine as sole energy, carbon, nitrogen, and sulphur source, but not when it was grown in a gluconate/salts medium. In nutritional studies we were unable to demonstrate a role for taurine as a sulphur source for S. aureus. [1,2-14C]- and [35S]taurine were taken up during overnight growth of cells, and radioactivity was distributed similarly among cellular fractions, indicating that the carbon and sulphur atoms of taurine were not cleaved and had the same fate. We were unable to demonstrate any catabolism of taurine in radiorespirometric experiments to detect evolution of 14CO2 by cells incubated with [1,2-14C]taurine. Thus, we found no evidence for a role of taurine in the energy, carbon and sulphur metabolism of S. aureus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Glucose / metabolism
  • Staphylococcus / metabolism*
  • Staphylococcus aureus / metabolism
  • Taurine / metabolism*


  • Taurine
  • Glucose