Long-term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease

Cell Mol Gastroenterol Hepatol. 2023;15(4):869-885. doi: 10.1016/j.jcmgh.2022.12.011. Epub 2022 Dec 27.

Abstract

Background & aims: There is great current interest in the potential application of DNA methylation alterations in peripheral blood leukocytes (PBLs) as biomarkers of susceptibility, progression, and treatment response in inflammatory bowel disease (IBD). However, the intra-individual stability of PBL methylation in IBD has not been characterized. Here, we studied the long-term stability of all probes located on the Illumina HumanMethylation EPIC BeadChip array.

Methods: We followed a cohort of 46 adult patients with IBD (36 Crohn's disease [CD], 10 ulcerative colitis [UC]; median age, 44 years; interquartile range [IQR] 27-56 years; 50% female) that received standard care follow-up at the Amsterdam University Medical Centers. Paired PBL samples were collected at 2 time points with a median of 7 years (range, 2-9 years) in between. Differential methylation and intra-class correlation (ICC) analyses were used to identify time-associated differences and temporally stable CpGs, respectively.

Results: Around 60% of all EPIC array loci presented poor intra-individual stability (ICC <0.50); 78.114 (≈9%) showed good (ICC, 0.75-0.89), and 41.274 (≈5%) showed excellent (ICC ≥0.90) stability, between both measured time points. Focusing on previously identified consistently differentially methylated positions indicated that 22 CD-, 11 UC-, and 24 IBD-associated loci demonstrated high stability (ICC ≥0.75) over time; of these, we observed a marked stability of CpG loci associated to the HLA genes.

Conclusions: Our data provide insight into the long-term stability of the PBL DNA methylome within an IBD context, facilitating the selection of biologically relevant and robust IBD-associated epigenetic biomarkers with increased potential for independent validation. These data also have potential implications in understanding disease pathogenesis.

Keywords: Biomarkers; Epigenetics; Personalized Medicine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Colitis, Ulcerative* / genetics
  • Crohn Disease* / genetics
  • DNA Methylation / genetics
  • Female
  • Humans
  • Inflammatory Bowel Diseases* / genetics
  • Male