Single channel currents of different amplitude activated by glutamate in a tonic (slow) crayfish muscle

Neurosci Lett. 1987 Sep 11;80(1):49-54. doi: 10.1016/0304-3940(87)90493-9.

Abstract

Single channel currents were recorded by means of the patch-clamp technique from a tonic (slow) crayfish muscle in the presence of 5 mM glutamate. The experiments were carried out with 'Gigaohm-seals' in the 'cell-attached' mode at 15-17 degrees C. Five classes of single channel currents with different mean amplitudes were resolved: i1 = -0.75 +/- 0.43 (S.D.) pA, i2 = -1.4 +/- 0.4 pA, i3 = -3.5 +/- 0.63 pA, i4 = -8.5 +/- 0.92 pA and i5 approximately equal to 2 X i4, i2, i3 and i4 were recorded at resting membrane potential, Eo approximately equal to -80 mV (pipette potential Vp = 0), while i1 and i5 were recorded at 40 mV hyperpolarized to Eo (Vp = +40 mV). The current most frequently seen was i4 which is the excitatory glutamate-activated single channel current recorded previously by Franke et al. The membrane reversal potentials and channel conductances for i2 and i4 were estimated to be +60 mV (Eo + 140 mV), 13 pS for i2 and +40 mV (Eo + 120 mV), 80 pS for i4. It was assumed that up to 40 i1 currents could superpose in a single patch to generate a DC current of up to -30 pA with current fluctuations the intensity of which increased with the DC current amplitude. Often variable combinations of i1 to i4 currents could be recorded simultaneously in a single patch. In particular, simultaneous activity of i1, i4; i2, i4 and i3, i4 currents was observed in different single patches.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astacoidea / physiology*
  • Glutamates / pharmacology*
  • Muscles / drug effects
  • Muscles / physiology*
  • Neuromuscular Junction / drug effects*

Substances

  • Glutamates