The high economic value of wood requires intensive breeding towards multipurpose biomass. However, long breeding cycles hamper the fast development of novel tree varieties that have improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate change. To speed up domestication, the integration of conventional breeding and new breeding techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-free genome engineering of forest trees, and briefly discuss how multiplex editing combined with multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on wood.
Keywords: Cas-DNA-free plant transformation; Forest tree breeding; Gene editing.
Copyright © 2022 Elsevier Ltd. All rights reserved.