Research and application of plasma characteristic models for pulsed laser processing of metal materials

RSC Adv. 2022 Dec 20;13(1):141-154. doi: 10.1039/d2ra06709a. eCollection 2022 Dec 19.

Abstract

Plasma characteristic models were established in cylindrical coordinates according to the plasma expansion characteristics of pulsed laser processing of metal materials, mainly including plasma expansion characteristic models and a change rate model for the collisional ionization effect. The plasma characteristics (expansion dimension, expansion velocity, electron density and collision rate) for the pulsed laser machining of a bronze grinding wheel were obtained by using the plasma characteristic models. The results show that the expansion velocity direction can be changed after plasma collision, resulting in particles returning and depositing onto the processed material surface. Plasma spectrum measurements for the pulsed laser machining of a bronze grinding wheel and grinding tests were carried out. Based on the measured spectral data, the plasma electron temperature and plasma electron density were calculated, and the topography of the machined grinding wheel surface was observed, which confirms that black particles can return to cover the grinding wheel surface. Through grinding experiments, it is verified that the returning particles reduce the height of the abrasive protruding binder and block the chip space around the abrasive particles, resulting in reduced grinding performance. The experimental calculation data and numerical simulation results are basically consistent with each other, which not only verifies the correctness and feasibility of the plasma characteristic models but also provides theoretical guidance and process optimization for subsequent research into laser machining of materials.