A facile and high-sensitive bio-sensing of the V617F mutation in JAK2 gene by GSH-CdTe-QDs FRET-based sensor

Heliyon. 2022 Dec 22;8(12):e12545. doi: 10.1016/j.heliyon.2022.e12545. eCollection 2022 Dec.

Abstract

This study aimed to directly detect the V617F point mutation of the Janus kinase 2 (JAK2) gene in the target DNA using a FRET-based biosensor. The water-soluble GSH-CdTe-QDs were synthesized by a one-step process, then GSH-QD conjugated to the termini amino-modified oligonucleotides target via carboxylic groups on the QD surface. The prepared QDs-DNA biosensor was applied in the quantitative and rapid detection of V617F mutation with a detection limit of 3 × 10-9 mol L-1 based on the FRET mechanism. In other words, detecting the V617F mutation by bio-sensing technology would be much simpler, cheaper, time-saving, highly sensitive, and more convenient than molecular diagnostic tools. Furthermore, the nano-biosensor was applied to detect the V617F mutation in clinical samples compared to the common ARMS-PCR (Amplification Refractory Mutation System-Polymerase Chain Reaction) standard method. The results revealed that the GSH-capped biosensors would be effective for V617F mutation detection in samples distinguished with satisfactory analytical outcomes. Therefore, the designed fluorescence nanoprobe is suitable for the specific detection of V617F mutation of the JAK2 gene in clinical samples.

Keywords: Biosensor; Fluorescence resonance energy transfer; Janus kinase 2; Quantum dots; V617F mutation.