Is word learning capacity restored after a daytime nap?

Cortex. 2023 Feb:159:142-166. doi: 10.1016/j.cortex.2022.10.013. Epub 2022 Dec 17.


Sleep is thought to be involved in the consolidation of new memories encoded during the day, as proposed by complementary learning systems accounts of memory. Other theories suggest that sleep's role in memory is not restricted to consolidation. The synaptic homeostasis hypothesis proposes that new learning is implemented in the brain through strengthening synaptic connections, a biologically costly process that gradually saturates encoding capacity during wake. During slow-wave sleep, synaptic strength is renormalized, thus restoring memory encoding ability. While the role of sleep in memory consolidation has been extensively documented, few human studies have explored the impact of sleep in restoring encoding ability, and none have looked at learning beyond episodic memory. In this registered report we test the predictions made by the complementary learning systems accounts and the synaptic homeostasis hypothesis regarding adult participants' ability to learn new words, and to integrate these words with existing knowledge. Participants took a polysomnographically-monitored daytime nap or remained awake prior to learning a set of new spoken words. Shortly after learning, and again on the following day, we measured participants' episodic memory for new words. We also assessed the degree to which newly learned words engage in competition with existing words. We predicted that sleep before encoding would result in better episodic memory for the words, and facilitate the overnight integration of new words with existing words. Based on existing literature and theory we further predicted that this restorative function is associated with slow-wave and sleep spindle activity. Our pre-registered analyses did not find a significant benefit of napping prior to encoding on word learning or integration. Exploratory analyses using a more sensitive measure of recall accuracy demonstrated significantly better performance in the nap condition compared to the no-nap condition in the immediate test. At the delayed test there was no longer a significant benefit of the nap. Of note, we found no significant effect of slow-wave activity prior to encoding on episodic memory or integration of newly learned words into the mental lexicon. However, we found that greater levels of Stage 2 sleep spindles were significantly associated with greater improvements in lexical competition from the immediate to the delayed test. Therefore, our results demonstrate some support for theories that implicate sleep spindles in restoring encoding capacity.

Keywords: Complementary learning systems; Daytime napping; Language learning; Sleep; Synaptic homeostasis hypothesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Humans
  • Learning
  • Mental Recall
  • Sleep*
  • Sleep, Slow-Wave*
  • Verbal Learning