Heterostructure-induced enhanced oxygen catalysis behavior based on metal cobalt coupled with compound anchored on N-doped carbon nanofiber for microbial fuel cell

J Colloid Interface Sci. 2023 Apr 15:636:305-316. doi: 10.1016/j.jcis.2023.01.013. Epub 2023 Jan 8.

Abstract

High-efficiency oxygen reduction reaction (ORR) electrocatalyst in microbial fuel cells (MFCs) is important to boost the power production efficiency and reduce overall cost. Herein, we demonstrate a novel nitrogen (N)-doped carbon nanofiber (N-CNF) supported metal and metal compound heterostructure derived from metal-organic frameworks (MOFs), which endows superior electrocatalytic activity by optimizing the coupling modulation effect. The resulting cobalt/cobalt phosphide and cobalt/cobalt sulfide nanoparticles embedded in N-doped carbon nanofiber (Co/CoP/Co2P@N-CNF, Co/CoS2@N-CNF) present superior ORR activity and methanol tolerance. Moreover, the assembled MFCs modified with Co/CoP/Co2P@N-CNF and Co/CoS2@N-CNF composite also achieve higher power density (375.16 and 400.06 mW m-2) as well as coulombic efficiency (11.2 %, 12.4 %), superior than that of Pt/C electrode (333.70 mW m-2, 10.4 %). Impressively, the Co/CoS2@N-CNF electrode exhibits long-term stability and durability in dual-chamber MFCs. A high-performance heterostructure cathode with an effective strategy for bridging nanocatalysis and practical MFCs is reported and presented.

Keywords: Carbon nanofiber; Heterostructure; Metal-organic framework; Microbial fuel cells; Oxygen reduction reaction.