[Epigenetic regulation mechanism: roles in enamel formation and developmental defects of enamel]

Zhonghua Kou Qiang Yi Xue Za Zhi. 2023 Jan 9;58(1):68-74. doi: 10.3760/cma.j.cn112144-20221019-00542.
[Article in Chinese]

Abstract

Enamel formation is a series of complex physiological processes, which are regulated by critical genes spatially and temporally. These processes involve multiple developmental stages covering ages and are prone to suffer signal interference or gene mutations, ultimately leading to developmental defects of enamel (DDE). Epigenetic modifications have important regulatory roles in gene expression during enarnel development. New technologies including high-throughput sequencing, chromatin immunoprecipitation sequencing (ChIP-seq), and DNA methylation chip are emerging in recent years, making it possible to establish genome-wide epigenetic modification profiles during developmental processes. The regulatory role of epigenetic modification with spatio-temporal pattern, such as DNA methylation, histone modification and non-coding RNA, has significantly expanded our understanding of the regulatory network of enamel formation, providing a new theoretical basis of clinical management and intervention strategy for DDE. The present review briefly describes the enamel formation process of human beings' teeth as well as rodent incisors and summarizes the dynamic characteristics of epigenetic modification during enamel formation. The functions of epigenetic modification in enamel formation and DDE are also emphatically discussed.

牙釉质形成是受到关键基因时空性程序性调控的一系列复杂的生理进程。该过程覆盖年龄段长,涉及生长发育时期多,易因信号干扰或基因突变导致牙釉质发育缺陷性疾病(developmental defects of enamel,DDE)。表观遗传修饰在发育过程中对基因表达起重要的调控作用。近年,高通量测序、染色质免疫共沉淀-高通量测序、DNA甲基化芯片等新技术层出不穷,使得绘制全基因组表观遗传修饰图谱成为可能。DNA甲基化、组蛋白修饰和非编码RNA等多种表观遗传时空特异性动态修饰在牙釉质形成过程中的调控作用扩展了人们对牙釉质形成调控网络的认识,也为DDE的临床管理和干预措施提供了新的理论基础。本文简述了人牙釉质和啮齿类动物切牙牙釉质的形成过程,总结表观遗传修饰在牙釉质形成中的动态特性,阐述了表观遗传修饰在牙釉质形成及牙釉质发育缺陷发生发展中的潜在作用机制。.

Publication types

  • Review
  • English Abstract

MeSH terms

  • DNA Methylation
  • Dental Enamel
  • Developmental Defects of Enamel*
  • Epigenesis, Genetic*
  • Humans
  • Oligonucleotide Array Sequence Analysis