Lycopene abolishes palmitate-mediated myocardial inflammation in female Wistar rats via modulation of lipid metabolism, NF-κB signalling pathway, and augmenting the antioxidant systems

Nutr Metab Cardiovasc Dis. 2022 Dec 5;S0939-4753(22)00486-0. doi: 10.1016/j.numecd.2022.11.026. Online ahead of print.


Background and aims: Obesity-related heart failure is exacerbated by excessive intake of saturated fats such as palmitate (PA). Lycopene (LYC) possesses anti-lipidemic, antioxidant, cytoprotective, and anti-inflammatory effects. This study, therefore, evaluated the impact of LYC against PA-invoked cardiotoxicity.

Methods and results: Thirty-six female rats were equally divided into six groups: control; PA (5 mM); PA + LYC (24 mg/kg); PA + LYC (48 mg/kg); LYC (24 mg/kg); and LYC (48 mg/kg). The PA was administered five times weekly for seven weeks, while the LYC was given for the last two weeks. Lipids in the blood and the heart were estimated, as were oxidative stress and antioxidant indices, cardiac function, inflammation, and histology. Palmitate overload occasioned a significant (p < 0.05) increase in cardiac cholesterol (50%), phospholipids (19%), and non-esterified fatty acids (40%). However, triglyceride levels decreased (38%). Furthermore, malondialdehyde (45%), hydrogen peroxide (33%) levels and myeloperoxidase activity increased (79%). Also, cardiac gamma-glutamyl transferase (50%), serum creatine kinase activities (1.34 folds), NF-kB, interleukin1β, and interleukin-6 mRNA expression increased in the PA group relative to the control. In contrast, reduced glutathione (13%) and nitric oxide levels (22%), interleukin-10 mRNA expression, cardiac creatine kinase (35%), lactate dehydrogenase (33%), aspartate, and alanine transaminase activities decreased markedly (15- and 10%, respectively). Also, PA caused hyperemia, congestion of the cardiac interstitium, and infiltration of inflammatory cells. However, treatment with LYC reversed the features of cardiotoxicity and histological complications caused by PA. These observations are likely because LYC has anti-inflammatory, antioxidant, and cytoprotective properties.

Conclusion: Thus, LYC might be an appropriate remedy to manage PA-induced cardiotoxicity in female rats.

Keywords: Female rats; Heart failure; Histopathology; Inflammation; Lycopene; Palmitic acid.