The mechanism of the drug interaction in humans between warfarin and rifampin was investigated by monitoring the elimination kinetics and metabolic disposition of a single oral dose of pseudoracemic warfarin by GC/MS. The decrease in hypoprothrombinemia observed with concomitant administration of therapeutic doses of rifampin was accompanied by a substantial decrease in the elimination half-lives of both warfarin enantiomers. Rifampin increased the clearance of (R)-warfarin threefold and the clearance of (S)-warfarin twofold. The excretion profiles for warfarin and its metabolites in urine and feces were similar for both control and treated subjects with the exception that 4'-hydroxywarfarin (stereoselective for the (S)-enantiomer) was observed when rifampin was administered. 4'-Hydroxywarfarin is a metabolite of the drug hitherto undetected in vivo in humans. Based on formation clearance values estimated for 6-, 7-, and 8-hydroxywarfarin, rifampin appears to increase the clearance of the parent drug by induction of the cytochrome P-450 isozyme(s) responsible for aromatic hydroxylation.