Multi-Omics Reveals the Effect of Population Density on the Phenotype, Transcriptome and Metabolome of Mythimna separata

Insects. 2023 Jan 10;14(1):68. doi: 10.3390/insects14010068.

Abstract

Population-density-dependent polymorphism is important in the biology of some agricultural pests. The oriental armyworm (Mythimna separata) is a lepidopteran pest (family Noctuidae). As the population density increases, its body color becomes darker, and the insect eats more and causes greater damage to crops. The molecular mechanisms underlying this phase change are not fully clear. Here, we used transcriptomic and metabolomic methods to study the effect of population density on the differentiation of second-day sixth instar M. separata larvae. The transcriptomic analysis identified 1148 differentially expressed genes (DEGs) in gregarious-type (i.e., high-population-density) armyworms compared with solitary-type (low-population-density) armyworms; 481 and 667 genes were up- and downregulated, respectively. The metabolomic analysis identified 137 differentially accumulated metabolites (DAMs), including 59 upregulated and 78 downregulated. The analysis of DEGs and DAMs showed that activation of the insulin-like signaling pathway promotes the melanization of gregarious armyworms and accelerates the decomposition of saccharides, which promotes the gregarious type to take in more food. The gregarious type is more capable of digesting and absorbing proteins and decreases energy consumption by inhibiting transcription and translation processes. The phase change traits of the armyworm are thus attributable to plasticity of its energy metabolism. These data broaden our understanding of the molecular mechanisms of insect-density-dependent polymorphism.

Keywords: Mythimna separata; energy metabolism; metabolomic; phase change; transcriptomic.