Background: Diabetes is a common disease marked by high blood sugars. An earlier clinical trial in type 1 diabetic subjects (T1Ds) found that repeat BCG vaccinations succeeded in lowering HbA1c values over a multi-year course. Here we seek to determine whether BCG therapy for bladder cancer may improve blood sugar levels in patients with comorbid T1D and type 2 diabetes (T2D). We also investigate whether BCG exposure may reduce onset of T1D and T2D by examining country-by-country impact of BCG childhood vaccination policies in relation to disease incidence.
Methods and findings: We first analyzed three large US patient datasets (Optum Labs data [N = 45 million], Massachusetts General Brigham [N = 6.5 million], and Quest Diagnostics [N = 263 million adults]), by sorting out subjects with documented T1D (N = 19) or T2D (N = 106) undergoing BCG therapy for bladder cancer, and then by retrospectively assessing BCG's subsequent year-by-year impact on blood sugar trends. Additionally, we performed an ecological analysis of global data to assess the country-by-country associations between mandatory neonatal BCG vaccination programs and T1D and T2D incidence. Multi-dose BCG therapy in adults with comorbid diabetes and bladder cancer was associated with multi-year and stable lowering of HbA1c in T1Ds, but not in T2Ds. The lack of a similar benefit in T2D may be due to concurrent administration of the diabetes drug metformin, which inhibits BCG's beneficial effect on glycolysis pathways. Countries with mandatory neonatal BCG vaccination policies had a lower incidence of T1D in two international databases and a lower incidence of T2D in one of the databases.
Conclusions: The epidemiological evidence analyzed here suggests that BCG may play a role in the prevention of T1D. It does not support prevention of T2D, most likely because of interference by metformin. Our ecological analysis of global data suggests a role for neonatal BCG in the prevention of T1D and, to a lesser extent, T2D. Randomized clinical trials are needed to confirm these findings.
Copyright: © 2023 Dias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.