The biophysical study provides a quantitative understanding of biomolecular interaction. The interaction of protein-nanoparticle has been critically examined using various biophysical and biochemical tools. The present investigation focussed on the biophysical characterization of anticancer drug cisplatin (CPT) with Bovine Serum Albumin (BSA) - Gold nanoparticles (GNP) conjugate; and BSA-CPT-GNP interaction with glycan sugars of glycoprotein receptor. Spectroscopic study (UV visible and fluorescence) showed strong binding of CPT loaded BSA with GNP. The binding between BSA-CPT-GNP and glycan sugars of gp60 receptor was estimated. Circular Dichroism (CD) spectroscopy study revealed weak alteration in the secondary structure of BSA upon CPT and GNP binding. Dynamic Light Scattering (DLS) data indicated the changes in the size of conjugates; zeta potential data showed the stability of conjugates. Biocompatible studies showed no toxicity to RBCs and chorioallantoic membrane (CAM). The mechanisms of interaction have been explored at the molecular and cellular levels. This investigation can be effectively extrapolated for in-vivo and in-vitro targeted drug delivery studies for cancer therapy.
Keywords: BSA-CPT-GNP DLC glycan interaction; Cisplatin-loaded albumin-gold nanoparticle conjugates; Spectroscopy.
Copyright © 2023 Elsevier B.V. All rights reserved.