As an important drinking water source for North China, the Middle Route of China's South-to-North Water Diversion Project (MRP) must provide high-quality water to maintain the health and safety of more than 60 million people. However, different water transfer operation modes may affect the water quality status, and the spatiotemporal characteristics of water quality in the MRP, with high water transfer volumes, remain poorly understood. In this study, the differences in water quality in the MRP between the initial stage (Nov. 2015 to Oct. 2017, low transfer volumes) and the current stage (Nov. 2017 to Oct. 2020, high transfer volumes) were compared, and the spatiotemporal water quality variations in the current stage were evaluated using multivariate statistical methods. For this purpose, approximately 12,528 observations, including the datasets of 12 water quality parameters collected from 29 monitoring sites, were used. The results showed that the water quality status improved significantly during the current stage. Based on principal component analysis (PCA), physical parameters (natural), nutrients, organic matter and microbes (anthropogenic), and heavy metals (natural and anthropogenic) were the key factors influencing water quality variations. Based on hierarchical cluster analysis, 12 months were classified into two groups: the high-flow period (HFP, Jun.-Oct.) and the low-flow period (LFP, Nov.-May). Additionally, 29 sampling sites were grouped into three sections: the Henan section (HN; S1-S16), Hebei section (HB; S17-S24), and Tianjin-Beijing section (TB; S25-S29). From the perspective of water quality regulation, the total nitrogen concentration and permanganate index in the HB and TB sections of the MRP should be considered throughout the year, and the faecal coliform concentrations in these two sections should also be considered during the HFP. The results of this study could be helpful for local administrations to understand and control pollution and better protect the quality of water in the MRP.
Keywords: Different water transfer operation modes; Important drinking water source; Multivariate statistical methods; Spatiotemporal variations; The Middle Route of China’s South-to-North Water Diversion Project; Water quality.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.