Evaluating the use of absolute binding free energy in the fragment optimisation process
- PMID: 36697714
- PMCID: PMC9814858
- DOI: 10.1038/s42004-022-00721-4
Evaluating the use of absolute binding free energy in the fragment optimisation process
Abstract
Key to the fragment optimisation process within drug design is the need to accurately capture the changes in affinity that are associated with a given set of chemical modifications. Due to the weakly binding nature of fragments, this has proven to be a challenging task, despite recent advancements in leveraging experimental and computational methods. In this work, we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment optimisation decisions, retrospectively calculating binding free energies for 59 ligands across 4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accurately rank fragment-sized binders with an overall Spearman's r of 0.89 and a Kendall τ of 0.67, although often deviating from experiment in absolute free energy values with an RMSE of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimisation decisions can be supported by the ABFE calculations. Comparing against cheaper endpoint methods, namely Nwat-MM/GBSA, we find that ABFEs offer better ranking power and correlation metrics. Our results indicate that ABFE calculations can usefully guide fragment elaborations to maximise affinity.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Analysis of Glycan Recognition by Concanavalin A Using Absolute Binding Free Energy Calculations.J Chem Inf Model. 2024 Oct 28;64(20):8063-8073. doi: 10.1021/acs.jcim.4c01088. Epub 2024 Oct 16. J Chem Inf Model. 2024. PMID: 39413277 Free PMC article.
-
Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study.J Chem Inf Model. 2017 Sep 25;57(9):2203-2221. doi: 10.1021/acs.jcim.7b00347. Epub 2017 Aug 24. J Chem Inf Model. 2017. PMID: 28786670 Free PMC article.
-
Computation of Absolute Binding Free Energies for Noncovalent Inhibitors with SARS-CoV-2 Main Protease.J Chem Inf Model. 2023 Aug 28;63(16):5309-5318. doi: 10.1021/acs.jcim.3c00874. Epub 2023 Aug 10. J Chem Inf Model. 2023. PMID: 37561001
-
Accurate Binding Free Energy Predictions in Fragment Optimization.J Chem Inf Model. 2015 Nov 23;55(11):2411-20. doi: 10.1021/acs.jcim.5b00538. Epub 2015 Oct 21. J Chem Inf Model. 2015. PMID: 26457994
-
Development and test of highly accurate endpoint free energy methods. 1: Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method.J Comput Chem. 2023 May 30;44(14):1334-1346. doi: 10.1002/jcc.27089. Epub 2023 Feb 21. J Comput Chem. 2023. PMID: 36807356 Review.
Cited by
-
Kartograf: A Geometrically Accurate Atom Mapper for Hybrid-Topology Relative Free Energy Calculations.J Chem Theory Comput. 2024 Mar 12;20(5):1862-1877. doi: 10.1021/acs.jctc.3c01206. Epub 2024 Feb 8. J Chem Theory Comput. 2024. PMID: 38330251
-
Analysis of Glycan Recognition by Concanavalin A Using Absolute Binding Free Energy Calculations.J Chem Inf Model. 2024 Oct 28;64(20):8063-8073. doi: 10.1021/acs.jcim.4c01088. Epub 2024 Oct 16. J Chem Inf Model. 2024. PMID: 39413277 Free PMC article.
-
Structural basis for antibiotic transport and inhibition in PepT2.Nat Commun. 2024 Oct 9;15(1):8755. doi: 10.1038/s41467-024-53096-6. Nat Commun. 2024. PMID: 39384780 Free PMC article.
-
Automated relative binding free energy calculations from SMILES to ΔΔG.Commun Chem. 2023 Apr 27;6(1):82. doi: 10.1038/s42004-023-00859-9. Commun Chem. 2023. PMID: 37106032 Free PMC article.
-
Structural basis for antibiotic transport and inhibition in PepT2, the mammalian proton-coupled peptide transporter.Res Sq [Preprint]. 2024 May 30:rs.3.rs-4435259. doi: 10.21203/rs.3.rs-4435259/v1. Res Sq. 2024. Update in: Nat Commun. 2024 Oct 9;15(1):8755. doi: 10.1038/s41467-024-53096-6 PMID: 38903084 Free PMC article. Updated. Preprint.
References
LinkOut - more resources
Full Text Sources
