Genome mining for unknown-unknown natural products

Nat Chem Biol. 2023 May;19(5):633-640. doi: 10.1038/s41589-022-01246-6. Epub 2023 Jan 26.

Abstract

Genome mining of biosynthetic pathways with no identifiable core enzymes can lead to discovery of the so-called unknown (biosynthetic route)-unknown (molecular structure) natural products. Here we focused on a conserved fungal biosynthetic pathway that lacks a canonical core enzyme and used heterologous expression to identify the associated natural product, a highly modified cyclo-arginine-tyrosine dipeptide. Biochemical characterization of the pathway led to identification of a new arginine-containing cyclodipeptide synthase (RCDPS), which was previously annotated as a hypothetical protein and has no sequence homology to non-ribosomal peptide synthetase or bacterial cyclodipeptide synthase. RCDPS homologs are widely encoded in fungal genomes; other members of this family can synthesize diverse cyclo-arginine-Xaa dipeptides, and characterization of a cyclo-arginine-tryptophan RCDPS showed that the enzyme is aminoacyl-tRNA dependent. Further characterization of the biosynthetic pathway led to discovery of new compounds whose structures would not have been predicted without knowledge of RCDPS function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / genetics
  • Biological Products*
  • Biosynthetic Pathways / genetics
  • Dipeptides / genetics
  • Genome, Bacterial
  • Multigene Family

Substances

  • Biological Products
  • Dipeptides