Glimepiride Prevents 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Induced Dopamine Neurons Degeneration Through Attenuation of Glia Activation and Oxidative Stress in Mice

Neurotox Res. 2023 Jun;41(3):212-223. doi: 10.1007/s12640-023-00637-4. Epub 2023 Jan 27.

Abstract

It is well established that there is a link between type 2 diabetes mellitus and Parkinson's disease (PD) evidenced in faster progression and more severe phenotype in patients living with diabetes suggestive of shared cellular pathways; hence, antidiabetic drugs could be a possible treatment options for disease modification. This study evaluated the effect of glimepiride (GMP), a third generation sulphonylurea, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Sixty mice were divided randomly into six individual groups of 10 mice each and dose orally as follows: group 1: vehicle (10 ml/kg, p.o.); group 2: MPTP (20 mg/kg, i.p. × 4 at 2-h interval); groups 3-5: GMP (1, 2, or 4 mg/kg, p.o.) + MPTP (20 mg/kg, i.p. × 4 at 2-h interval); and group 6: GMP (4 mg/kg, p.o.). Effect of glimepiride on motor activities were appraised with the use of open-field test and rotarod performance while non-motor activity was evaluated using force swim test (FST; depression) and Y-maze test (working memory). MPTP induced significant decrease in latency to fall on rotarod, distance covered/rearing in open field, mean speed and climbing in FST, and percentage alternation behavior in Y-maze suggestive of motor and non-motor dysfunction. However, MPTP-induced motor and non-motor dysfunction were ameliorated with glimepiride post-treatment. In addition, MPTP-induced increase in oxidative stress parameters and cholinergic neurotransmission was attenuated by glimepiride. In addition, MPTP-induced nigral dopamine neuron loss (decrease in tyrosine hydroxylase-positive neuron (TH)) and neuroinflammation (activation of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (iba-1)) were ameliorated by GMP administration. This study showed that glimepiride ameliorates MPTP-induced PD motor and non-motor deficits through enhancement of antioxidant defense signaling and attenuation of neuroinflammatory markers. Thus, this could be useful as a disease-modifying therapy in the management of PD.

Keywords: Acetylcholinesterase; Astrocytes; Inflammation; MPTP; Oxidative stress; Parkinson’s disease.

MeSH terms

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine / pharmacology
  • Animals
  • Diabetes Mellitus, Type 2* / metabolism
  • Disease Models, Animal
  • Dopaminergic Neurons
  • Mice
  • Mice, Inbred C57BL
  • Neuroglia
  • Oxidative Stress
  • Parkinson Disease* / metabolism
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  • glimepiride
  • Tyrosine 3-Monooxygenase