Background: Emerging evidence has linked electrocardiographic parameters with serum adhesion molecules and cognition; however, their interrelationship has not been explored.
Objective: We sought to investigate the associations of ventricular depolarization and repolarization intervals with serum adhesion molecules and cognitive function among rural-dwelling older adults.
Methods: This population-based study engaged 4,886 dementia-free participants (age ≥60 years, 56.2% women) in the baseline examination (March-September 2018) of MIND-China. Of these, serum intercellular and vascular adhesion molecules (ICAM-1 and VCAM-1) were measured in 1591 persons. We used a neuropsychological test battery to assess cognitive function. Resting heart rate, QT, JT intervals, and QRS duration were assessed with electrocardiogram. Data were analyzed using general linear models adjusting for multiple confounders.
Results: Longer JT interval was significantly associated with lower z-scores of global cognition (multivariable-adjusted β= -0.035; 95% confidence interval = -0.055, -0.015), verbal fluency (-0.035; -0.063, -0.007), attention (-0.037; -0.065, -0.010), and executive function (-0.044; -0.072, -0.015), but not with memory function (-0.023; -0.054, 0.009). There were similar association patterns of QT interval with cognitive functions. In the serum biomarker subsample, longer JT and QT intervals remained significantly associated with poorer executive function and higher serum adhesion molecules. We detected statistical interactions of JT interval with adhesion molecules (pinteraction <0.05), such that longer JT interval was significantly associated with a lower executive function z-score only among individuals with higher serum ICAM-1 and VCAM-1.
Conclusion: Longer ventricular depolarization and repolarization intervals are associated with worse cognitive function in older adults and vascular endothelial dysfunction may play a part in the associations.
Keywords: Cardiovascular diseases; cognitive function; serum adhesion molecules; ventricular depolarization and repolarization intervals.