Comparison of cell response to chromatin and DNA damage

bioRxiv [Preprint]. 2023 Jan 18:2023.01.17.524424. doi: 10.1101/2023.01.17.524424.

Abstract

DNA-targeting drugs may damage DNA or chromatin. Many anti-cancer drugs damage both, making it difficult to understand their mechanisms of action. Using molecules causing DNA breaks without altering nucleosome structure (bleomycin) or destabilizing nucleosomes without damaging DNA (curaxin), we investigated the consequences of DNA or chromatin damage in normal and tumor cells. As expected, DNA damage caused p53-dependent growth arrest followed by senescence. Chromatin damage caused higher p53 accumulation than DNA damage; however, growth arrest was p53-independent and did not result in senescence. Chromatin damage activated the transcription of multiple genes, including classical p53 targets, in a p53-independent manner. Although these genes were not highly expressed in basal conditions, they had chromatin organization around the transcription start sites (TSS) characteristic of most highly expressed genes and the highest level of paused RNA polymerase. We hypothesized that nucleosomes around the TSS of these genes were the most sensitive to chromatin damage. Therefore, nucleosome loss upon curaxin treatment would enable transcription without the assistance of sequence-specific transcription factors. We confirmed this hypothesis by showing greater nucleosome loss around the TSS of these genes upon curaxin treatment and activation of a p53-specific reporter in p53-null cells by chromatin-damaging agents but not DNA-damaging agents.

Publication types

  • Preprint